Critical Values

Critical Values

Critical values are the cut-off points that separate the critical region from the non-critical region in a hypothesis test or determine the width of a confidence interval.

Choosing Critical Values

Distribution When to Use Requirements Example Uses
z-critical (z) Large samples n30, known σ Proportions, large sample means
t-critical (t) Small samples n<30, unknown σ Small sample means, differences

Types of Critical Values

z-Critical Values (z)

Used with:

Confidence Level Area in Tails (α) z Value
90% 0.10 1.645
95% 0.05 1.96
99% 0.01 2.576

t-Critical Values (t)

Used with:

t-critical values depend on:

Finding Critical Values

Process Comparison

Step z-Critical Values t-Critical Values
1. Level Choose confidence level (C) Choose confidence level (C)
2. Calculate α=1C df = n1
3. Find z for area 1α2 t for area 1α2 with df
Example 95%: z0.975=1.96 95%, n=10: t0.975,9=2.262

Applications in Statistical Analysis

Confidence Intervals

Type Formula When to Use
Large Sample Mean x¯±z×σn n30, known σ
Small Sample Mean x¯±t×sn n<30 or unknown σ
Proportion p^±z×p^(1p^)n np^10, n(1p^)10

Hypothesis Testing Decision Rules

Method Decision Rule Equivalent to
Critical Value Reject H0 if $ teststatistic
p-value Reject H0 if p-value < α Same conclusion

Common Values Reference Table

Confidence Level α z-critical t-critical (df=10) t-critical (df=20)
90% 0.10 1.645 1.812 1.725
95% 0.05 1.96 2.228 2.086
99% 0.01 2.576 3.169 2.845

Key Relationships

See also: