Critical Values
Critical values are the cut-off points that separate the critical region from the non-critical region in a hypothesis test or determine the width of a confidence interval .
Choosing Critical Values
Distribution
When to Use
Requirements
Example Uses
z-critical (z ∗ )
Large samples
n ≥ 30 , known σ
Proportions, large sample means
t-critical (t ∗ )
Small samples
n < 30 , unknown σ
Small sample means, differences
Types of Critical Values
Used with:
Confidence Level
Area in Tails (α )
z ∗ Value
90%
0.10
1.645
95%
0.05
1.96
99%
0.01
2.576
Used with:
t-critical values depend on:
Finding Critical Values
Process Comparison
Step
z-Critical Values
t-Critical Values
1. Level
Choose confidence level (C)
Choose confidence level (C)
2. Calculate
α = 1 − C
df = n − 1
3. Find
z ∗ for area 1 − α 2
t ∗ for area 1 − α 2 with df
Example
95%: z 0.975 = 1.96
95%, n=10: t 0.975 , 9 = 2.262
Applications in Statistical Analysis
Confidence Intervals
Type
Formula
When to Use
Large Sample Mean
x ¯ ± z ∗ × σ n
n ≥ 30 , known σ
Small Sample Mean
x ¯ ± t ∗ × s n
n < 30 or unknown σ
Proportion
p ^ ± z ∗ × p ^ ( 1 − p ^ ) n
n p ^ ≥ 10 , n ( 1 − p ^ ) ≥ 10
Hypothesis Testing Decision Rules
Method
Decision Rule
Equivalent to
Critical Value
Reject H 0 if $
t e s t s t a t i s t i c
p-value
Reject H 0 if p-value < α
Same conclusion
Common Values Reference Table
Confidence Level
α
z-critical
t-critical (df=10)
t-critical (df=20)
90%
0.10
1.645
1.812
1.725
95%
0.05
1.96
2.228
2.086
99%
0.01
2.576
3.169
2.845
Key Relationships
Critical values ↔ Confidence level (fixed relationship)
p-value ↔ Test statistic (varies by sample)
Sample size ↔ Type of critical value (z or t)
See also: